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2 ANGULAR CORRELATION OF GAMMA RAYS

Part A

Basics

1 Aim of this Measurement

The aim of the experiment is the measurement of gamma-gamma correlation of 60Ni and the

determination of the anisotropy and the correlation function.

Note: Since we did the theoretical basics of α-, β-, γ-decay, of interaction with matter

and of scintillator counters already in other protocols in German, we won't quote it here

again because we would have to translate everything into English and there wouldn't be any

learning e�ect doing so.

2 Angular correlation of gamma rays

The gamma radiation of electromagnetic transitions from J1 to J2 has to be isotropic because

of symmetry if:

1. All starting states1 are uniformly occupied.

2. All possible transitions are measured at once.

If we look at some dipole transitions with the selection rule ∆m = −1, 0, 1 we would

except isotropic radiation. In fact, the probabilities are:

W∆m=±1dΩ =
3
16

π
(
1 + cos2 θ

)
dΩ

W∆m=0dΩ =
3
8
π sin2 θdΩ

So the whole propability is (if we assume uniform occupancy)

WSumdΩ =
∑

i

WidΩ =
3
4
πdΩ

which is perfectly isotropic. In the Experiment we can only measure the whole intensity. If

every state is occupied Ni times we get:

ISum =
∑

i

NiWidΩ = (N+W+ + N−W− + N0W0)dΩ

If we assume thermodynamic equilibration the occupation number Ni are given by the

Boltzmann-distribution2:

Ni ∝ exp
[
−mi

J
· µB

kT

]
⇒ Ni+1

Ni
≈ 1 for small B and high T

So we can assume uniform occupancy.

1there are 2 · J1 + 1 states possible with di�erent m = −J1, ..., J1
2at least at high temperature
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2 ANGULAR CORRELATION OF GAMMA RAYS

We will get an anisotropy because we'll measure two transitions of one atom. We choose

the quantisationaxis into the direction of the �rst photon. So θ = 0. If we look at the dipole

radiation as an example:

W∆m=±1dΩ =
3
16

π
(
1 + cos2 0

)
dΩ =

3
8
πdΩ

W∆m=0dΩ =
3
8
π sin2 0dΩ = 0

So we know, that after the �rst transitions the states m = 0 isn't occupied and we'll get

the anisotropy.

In general the di�erential cross section is given by:

dσ

dΩ
=

imax∑
i=0

A2i · P2i(cos θ) imax = min(L1, L2, J2)

Here L1, L2 describe the initial and end state, while J2 refers to the intermediate state. In

the case of 60Co we have quadrupole radiation. Hence,

L1 = L2 = J2 = 2 ⇒ imax = 2

dσ

dΩ
= A0 + A2 · P2(cos θ) + A4 · P4(cos θ)

Since we don't want a dependency on A0 we de�ne a korrelationfunction K(θ) by:

K(θ) :=
dσ
dΩ (θ)

dσ
dΩ (90◦)

= 1 + a2 cos2(θ) + a4 cos4(θ)

a2 and a4 are new constants which we want to measure. The theoretical values are:

a2 =
1
8

a4 =
1
24

Last but not least, we de�ne the anisotropy An by

An :=
dσ
dΩ (180◦) − dσ

dΩ (90◦)
dσ
dΩ (90◦)

=
K(180◦) − K(90◦)

K(90◦)
) = K(180◦) − 1 = a2 + a4
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3 THE SETUP

Part B

Experiment

In this Experiment we want to measure the gamma-gamma correlation of 60Ni and determine

the anisotropie. In order to do that we need to measure coincidences.

3 The Setup

The experiment is a typical correlation experiment setup. We use two NaJ-Scintillor-detectors.

One of the detectors is �xed, whereas the other one can be positioned at the emission angles3

of 90◦, 135◦ and 180◦. The basic principle of a coincidence measurement can be seen in the

picture below.

In the setup a energy discriminator is used. In our experiment we set the lower level of

the discriminator at 60-70% of the photopeak. This lower level is a compromise. On the one

hand, we want to avoid detecting so called "false" coincidences, which occur due to compton

scattering at the detectors. Those false coincidences have a energy lower than that of the

photopeak, so by setting the lower level at the photopeak we eliminate those. But on the

other hand we need to detect enough real coincidences in oder to have a good statistic.

After the discriminator a time delay can be set. We will use this delay to determine a

rate of random coincidences. In addition to the rates measured by the two detectors we also

obtain the rate of coincidences (e.g. how often both detectors detect a gamma-quant at the

same time). These rates allow us to calculate the correlation function and the anisotropie.

Since we want to detect as many coincidences as possible it seems advantageous to use a

sample with a high activity. However, this is not completely true, because one has also to take

random coincidences into consideration. The number of true coincidences increases linearly

with the activity, but the number of random coincidences is proportional to the square of

the activity. In order to reduce the number of random coincidences, one has to choose a low

resolutiontime τA. We will also determine τA in our setup.

τA =
NZ

N1 · N2

NZ = random coincidences; N1, N2 = counts of detector 1,2

3The �xed detector detects the γ-rays with the emission angle of 0◦
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4 MEASUREMENT

4 Measurement

We take three series of measurement. In each series we measure the rates of the detectors

and the coincidences for the three angles of 90◦, 135◦ and 180◦ for 400s. In order to assure

that the results are reproduceable, we measure each angle twice in one series.

Furthermore we measure the background radiation and the random coincidences.
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6 MEASUREMENT

Part C

Analysis

There are two di�erent ways how to claculate the correlation function and the anisotropy.

• We sum up all the coincidence rates belonging to one angle and use those to determine

the coe�cients a2 and a4 in the correlation function. This way we can obtain the

statistical error.

• We evaluate each series of measurement on its own and take the average later. This

way we can obtain the total error.

5 Correlation function

As stated above the Correlation function is of the form:

K(Θ) = 1 + a2 cos2 Θ + a4 cos4 Θ

We obtain K(Θ) by:

K(Θ) =
NK(Θ)

N1(Θ)N2(Θ)
N1(90◦)N2(90◦)

NK(90◦)
·

So we chose K(90◦) = 1 to be normalized. In the following we will use the de�ntion:

K ′(Θ) =
NK(Θ)

N1(Θ)N2(Θ)
K(Θ) =

K ′(Θ)
K ′(90◦)

Hence we can use K(135◦) and K(180◦) to calculate a2 and a4.

a2 = 4K(135◦) − K(180◦) − 3

a4 = 2K(180◦) − 4K(135◦) + 2

The anisotropy is given by:

An = K(180◦) − 1

6 Measurement

6.1 Background

We did several measurements which all lasted exactly 400 s. First (and also at the end) the

measure the background without any radioactiv material. The results were:

Detector 1 - N1 Detector 2 - N2 Coincendenzes - NK

1st Background measurement 1869 1796 6

2nd Background measurement 1518 1520 1

Since the �rst rate of coincendenzes is really a bit high4, we used only the second one.

We subtracted the second measurement from each other measurement before calculation

anything further.

4indeed it's even higher than the rate of random coincidences we measured with the 60Co
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6 MEASUREMENT

6.2 Random coincidences

In order to measure the random coincidences we set the time delay between the two detectors

at 2 · 63 s = 126 s. The result of the measurement was5:

Detector 1 - N1 Detector 2 - N2 Coincendenzes - NK

random coincidences 72565 73000 2

So the random value of the correlation function is:

K ′
random =

NK

N1 · N2
= 0,378 · 10−9

We will subtract this value from every further value of the correlation function.

6.3 1st analysis method

In this analyisis method we added up all the counting rates for each angle and used those

values to calculate the coe�cients a2 and a4 and the anisotropie An. If we also substract the

background, we obtain the following rates:

Θ counter 1 counter 2 coincidences

180◦ 411947 ±690 425516 ±700 1995± 45

135◦ 408504± 687 428864 ±702 1853±44
90◦ 406219±686 406689 ±686 1698 ±42

The error as given above of the counting rates N sum
corr (sum of all values corrected with the

background) can be calculated using Gaussian error propagation. Since this is a statistical

measurement the error of one counting rate is given by its squareroot.

N sum

corr =
√

N sum + 36 · NB

N sum=sum of all counting rates to one angle; NB=background counting rate for this

angle

With those counting rates we can calculate K ′(Θ). The formula to calculate the error of
K ′(Θ) is:

∆K ′ = K ′ ·

√(
∆NK

NK

)2

+
(

∆N1

N1

)2

+
(

∆N2

N2

)2

Since we want to calculate K(Θ) we still need to correct K ′ by substracting K ′
random

. We

obtain:
Θ K ′

corr[10−9]
180◦ 11,02±0,44
135◦ 10,22±0,44
90◦ 9,92±0,44

∆K ′
corr =

√
(∆K ′)2 + (∆K ′

random
)2

mit ∆K ′
random

= 0,36

Now we can calculate the correlation function for Θ = 135◦ and Θ = 90◦.

K(Θ) =
K ′

corr(Θ)
K ′

corr(90◦)
; ∆K(Θ) = K(Θ) ·

√(
∆K ′

corr(Θ)
K ′

corr(Θ)

)2

+
(

∆K ′
corr(90◦)

K ′
corr(90◦)

)2

5already corrected by the background
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6 MEASUREMENT

K(135◦) = 1,030 ± 0,064

K(180◦) = 1,111 ± 0,067

Thus we get for the coe�cients:

a2 = 4K(135◦) − K(180◦) − 3; ∆a2 =
√

(4 · ∆K(135◦))2 + (∆K(180◦))2

⇒ a2 = 0,0093 ± 0,2634

a4 = −4K(135◦) + 2(180◦) + 2; ∆a4 =
√

(4 · ∆K(135◦))2 + (2 · ∆K(180◦))2

⇒ a4 = 0,1019 ± 0,2876

And for the anisostropie:

An = K(180◦) − 1; ∆An = ∆K(180◦)

⇒ An = 0,111 ± 0,067

The statistical error of the coe�cients is extremly high. Therefore it is not surprising

that our values di�er greatly form the theoretical values. In order to determine if the method

can nevertheless be used to calculate those if we only measure long enough and take enough

series, we use a second analysis method which gives us the total error.

6.4 2nd analysis method

Here were added only the values of the two consecutive measurements of each angle. So there

are three values for each angle. The resulted values for K ′ were:6

angle Θ K ′(Θ)[10−9]
180◦ 33,82

135◦ 33,54

90◦ 29,00

180◦ 32,52

135◦ 30,95

90◦ 30,59

180◦ 34,99

135◦ 29,55

90◦ 31,85

With these values we can calculate K(Θ) = K′(Θ)
K′(90◦)

. Note that K(90◦) = 1 by de�nition.

K(180◦) K(135◦) a2 a4 An

1st series 1,166 1,156 0,460 -0,293 0,166

2nd series 1,063 1,012 -0,015 0,079 0,063

3rd series 1,099 0,928 -0,387 0,486 0,099

6already corrected by the background and K′
random
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6 MEASUREMENT

In this table also the values for a2, a4 and An were already calculated by:

a2 = 4K(135◦) − K(180◦) − 3

a4 = 2K(180◦) − 4K(135◦) + 2

An = K(180◦) − 1

We see, that the values of ai and An are spreaded widely. Nethertheless we calulated the

mean value and the derivation:

ā2 =
1
3

∑
i

a2i
= 0,019 σa2 =

√
1

3 · 2
∑

i

(ā2 − a2i
)2 = 0,245

ā4 =
1
3

∑
i

a4i = 0,090 σa4 =

√
1

3 · 2
∑

i

(ā4 − a4i)2 = 0,225

Ān =
1
3

∑
i

Ani = 0,109 σAn =

√
1

3 · 2
∑

i

(Ān − Ani)2 = 0,030

The values of ai don't �t the theoretical values a2 = 0,125 and a4 = 0,042 very well. But

the errors are that high that the theoretical values are still in the error boundaries.

6.5 Conclusion

In the both methods we calculated the following two sets of results. Except for the anisotropy

in the 2nd method, the theoretical values are always between the error boundaries. Since

there's only a chance of 68,3% for beeing in the standard deviation, we don't need to worry

about that.

1st method 2nd method theory

a2 0,009 ± 0,263 0,019 ± 0,245 0,125

a4 0,102 ± 0,288 0,090 ± 0,225 0,042

An 0,111 ± 0,067 0,109 ± 0,030 0,162

The errors of the 1st method are pure statistical errors. They could be minimized if one

would do a longer measurement. The errors of the 2nd method are somehow combined errors

of the statistical and the systematical errors. If they were signi�cally larger then the 1st one,

there wouldn't be any bene�t in doing a longer mesurement.

Since the statistical errors are slightly larger, one could do a longer measurement unless

the statistical errors will get much smaller than the error out of 2nd method.

6.6 resolution time τA

Moreover we have to calculate the resolution time. It is given by:

τA =
NZ

N1N2
· T ;

∆τA

τA
=

√(
∆NZ

NZ

)2

+
(

∆N1

N1

)2

+
(

∆N2

N2

)2

T is the measurement period T = 400s. The rates NZ , N1 and N2 were of course corrected

with the background. Thus we get:

τA = (210 ± 70)ns

We know that the experiment is supposed to have a minimum resolution time of 10ns.

So our result seems plausible.
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